翻訳と辞書
Words near each other
・ Elazığ Atatürk Stadium
・ Elazığ Belediyespor
・ Elazığ Botanical Park
・ Elazığ Culture Park
・ Elazığ Education Campus
・ Elazığ Gazi Caddesi
・ Elastica
・ Elastica (album)
・ Elastica 6 Track EP
・ Elastica theory
・ ElasticHosts
・ Elasticity
・ Elasticity (cloud computing)
・ Elasticity (data store)
・ Elasticity (economics)
Elasticity (physics)
・ Elasticity coefficient
・ Elasticity of a function
・ Elasticity of cell membranes
・ Elasticity of complementarity
・ Elasticity of intertemporal substitution
・ Elasticity of substitution
・ Elasticsearch
・ Elastin
・ Elastin like polypeptides
・ Elastinen
・ Elastix
・ Elasto Mania
・ Elasto-capillarity
・ Elasto-plastic self-consistent modeling


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Elasticity (physics) : ウィキペディア英語版
Elasticity (physics)

In physics, elasticity (from Greek ἐλαστός "ductible") is the ability of a body to resist a distorting influence or stress and to return to its original size and shape when the stress is removed. Solid objects will deform when forces are applied on them. If the material is elastic, the object will return to its initial shape and size when these forces are removed.
The physical reasons for elastic behavior can be quite different for different materials. In metals, the atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state. For rubbers and other polymers, elasticity is caused by the stretching of polymer chains when forces are applied.
Perfect elasticity is an approximation of the real world, and few materials remain purely elastic even after very small deformations. In engineering, the amount of elasticity of a material is determined by two types of material parameter. The first type of material parameter is called a modulus, which measures the amount of force per unit area (stress) needed to achieve a given amount of deformation. The units of modulus are pascals (Pa) or pounds of force per square inch (psi, also lbf/in2). A higher modulus typically indicates that the material is harder to deform. The second type of parameter measures the elastic limit. The limit can be a stress beyond which the material no longer behaves elastic and deformation of the material will take place. If the stress is released, the material will elastically return to a permanent deformed shape instead of the original shape.
When describing the relative elasticities of two materials, both the modulus and the elastic limit have to be considered. Rubbers typically have a low modulus and tend to stretch a lot (that is, they have a high elastic limit) and so appear more elastic than metals (high modulus and low elastic limit) in everyday experience. Of two rubber materials with the same elastic limit, the one with a lower modulus will appear to be more elastic.
==Overview==
When an elastic material is deformed due to an external force, it experiences internal resistance to the deformation and restores it to its original state if the external force is no longer applied. There are various elastic moduli, such as Young's modulus, the shear modulus, and the bulk modulus, all of which are measures of the inherent elastic properties of a material as a resistance to deformation under an applied load. The various moduli apply to different kinds of deformation. For instance, Young's modulus applies to extension/compression of a body, whereas the shear modulus applies to its shear. 〔 Landau LD, Lipshitz EM. Theory of Elasticity, 3rd Edition, 1970: 1-172.〕
The elasticity of materials is described by a stress-strain curve, which shows the relation between stress (the average restorative internal force per unit area) and strain (the relative deformation). For most metals or crystalline materials, the curve is linear for small deformations, and so the stress-strain relationship can adequately be described by Hooke's law, and higher-order terms can be ignored. However, for larger stresses beyond the elastic limit, the relation is no longer linear. For even higher stresses, materials exhibit plastic behavior, that is, they deform irreversibly and do not return to their original shape after stress is no longer applied. For rubber-like materials such as elastomers, the gradient of the stress-strain curve increases with stress, meaning that rubbers progressively become more difficult to stretch, while for most metals, the gradient decreases at very high stresses, meaning that they progressively become easier to stretch. Elasticity is not exhibited only by solids; non-Newtonian fluids, such as viscoelastic fluids, will also exhibit elasticity in certain conditions. In response to a small, rapidly applied and removed strain, these fluids may deform and then return to their original shape. Under larger strains, or strains applied for longer periods of time, these fluids may start to flow like a viscous liquid.
Because the elasticity of a material is described in terms of a stress-strain relation, it is essential that the terms ''stress'' and ''strain'' be defined without ambiguity. Typically, two types of relation are considered. The first type deals with materials that are elastic only for small strains. The second deals with materials that are not limited to small strains. Clearly, the second type of relation is more general.
For small strains, the measure of stress that is used is the Cauchy stress while the measure of strain that is used is the infinitesimal strain tensor. The stress and strain measures are related by a linear relation known as Hooke's law. Linear elasticity describes the behavior of such materials. Cauchy elastic materials and Hypoelastic materials are models that extend Hooke's law to allow for the possibility of large rotations.
For more general situations, any of a number of stress measures can be used provided they are work conjugate to an appropriate finite strain measure, i.e., the product of the stress measure and the strain measure should be equal to the internal energy (which does not depend on how the stress or strain are measured). Hyperelasticity is the preferred approach for dealing with finite strains and several material models analogous to Hooke's law are in use.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Elasticity (physics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.